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Temporal analysis of capillary jet breakup 
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The temporal instability of a cylindrical capillary jet is analysed numerically for 
different liquid Reynolds numbers Re, disturbance wavenumbers k, and amplitudes eo, 
The breakup mechanism of viscous liquid jets and the formation of satellite drops are 
described. The results show that the satellite size decreases with decreasing Re, and 
increasing k and e0. Marginal Reynolds numbers below which no satellite drops are 
formed are obtained for a large range of wavenumbers. The growth rates of the 
disturbances are calculated and compared with those from the linear theory. These 
results match for low-Re jets, however as Re is increased the results from the linear 
theory slightly overpredict those from the nonlinear analysis. (At the wavenumber of 
k = 0.9, the linear theory underpredicts the nonlinear results.) The breakup time is 
shown to decrease exponentially with increasing the amplitude of the disturbance. The 
cut-off wavenumber is shown to be strongly dependent on the amplitude of the initial 
disturbance for amplitudes larger than approximately 5 of the initial jet radius. The 
stable oscillations of liquid jets are also investigated. The results indicate that liquid jets 
with Re - O( 1) do not oscillate, and the disturbances are overdamped. However, 
liquid jets with higher Re oscillate with a period which depends on Re and E,,. The 
period of the oscillation decreases with increasing Re at small eo; however, it increases 
with increasing Re at large eo. Marginal Reynolds numbers below which the 
disturbances are overdamped are obtained for a wide range of wavenumbers and eo = 
0.05. 

1. Introduction 
A liquid jet issuing from a nozzle may break up into small drops when it is subjected 

to even minute disturbances. These disturbances can be in the form of surface 
displacement, pressure or velocity fluctuations in the supply system or on the jet 
surface, as well as fluctuations in liquid properties such as temperature, viscosity, or 
surface tension coefficient. In order to characterize the instability of a capillary jet, a 
harmonic disturbance is imposed on the surface of the jet and its growth rate is 
investigated. Such investigations have revealed that the jet is unstable for axial 
disturbances with wavenumbers less than a cut-off wavenumber k,, and stable 
otherwise. For each wavelength of an unstable disturbance one main drop and one or 
more usually smaller drops, referred to as the satellite or spherous drops, are formed. 

The main objectives of the studies on the liquid jet instability have been to obtain the 
growth rates of the initial disturbances (as a function of the disturbance wavenumber), 
the cut-off wavenumber, the drop sizes after the breakup, the breakup length, and the 
breakup time; and to determine the drop behaviour after the breakup (e.g. satellite 
merging), and effects of the initial disturbance amplitude, disturbance type (such as 
surface, pressure or velocity disturbances), initial velocity profile of the jet, and of the 
fluid properties. These studies have been both experimental and theoretical. 
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The experimental research on jet breakup dates back to the studies by Bidone (1829), 
Savart ( 1833), Magnus ( 1859), Plateau (1 873), Boussinesq (1 877), and Rayleigh (1882, 
1896). These studies were aimed at understanding the mechanism of the jet breakup. 
The later experimental investigations focused on the determination of the breakup 
length and breakup time under various conditions (Smith & Moss 1917; Tyler & 
Watkin 1932 ; Tyler 1933). More quantitative experimental characterization of the jet 
breakup has been completed by Donnelly & Glaberson (1966) and Goedde & Yuen 
(1970) by studying the instability of a jet subject to a harmonic disturbance. They 
measured the amplitude variation along the jet and then calculated its growth rate. 
They showed that the linear theory well predicts the experimentally measured growth 
rates. Taub (1976) decomposed the measured amplitude of the disturbance into its 
harmonic components, and provided its variation along the jet axis. He showed that 
the nonlinear analysis of Yuen (1968) well predicts the growth along the axis of the 
fundamental and first two harmonic components. Rutland & Jameson (1970, 1971) 
measured the main and satellite drop sizes for various fluids. Pimbley & Lee (1977) 
investigated the formation of the satellite and its consequent merging. They obtained 
regions for backward, forward, and no merging of the satellites. Vassallo & Ashgriz 
( I  991) investigated the breakup of a water jet at large disturbance wavelengths and for 
various disturbance amplitudes. They showed that the number of drops formed 
increased with increasing disturbance wavelength. They also studied the satellite 
merging as a function of disturbance amplitude. Others have studied the effects of the 
following : nozzle design (McCarthy & Molloy 1974); surrounding fluids (Crane, Birch 
& McCormack 1964, and Tjahjadi, Stone & Ottino 1992); fluid properties, such as the 
surface tension coefficient (Faidley & Panton 1990); superposition of several waves 
(Cline & Anthony 1978; Chaudhary & Maxworthy 1980~.  6;  Orme, Willis & Nguyen 
1993; and Bousfield, Stockel & Nanivadekar 1990); slurry fluids (Ogg & Schetz 
1984); and viscoelastic fluids (Kitamura, Mishima & Takahashi 1982; Kitamura & 
Takahashi 1982). 

Theoretical investigation have been mainly through either perturbation-type analysis 
or one-dimensional models. These studies can be divided into two major categories, 
namely temporal and spatial analysis. In the temporal analysis, an infinite jet, 
stationary relative to a moving observer is considered and the growth rate of the 
disturbance amplitude along the jet is determined. In the spatial analysis, the growth 
rate of the disturbance amplitude along a semi-infinite jet is considered with the nozzle 
conditions fixed. Linear and nonlinear perturbation analysis or direct numerical 
methods are used in each category. A detailed review of these techniques up to 1979 
is provided by Bogy (19796) and will not be repeated here. However, different types of 
analysis are categorized and referenced in table 1. In this paper we consider the 
temporal instability of a viscous liquid jet; therefore, the remainder of the discussion 
is on this category of studies. 

Rayleigh (1879) provided the first analytical description of the temporal instability 
of an inviscid incompressible jet using linear theory. He showed that an axisymmetric 
harmonic disturbance of the form 

grows in time according to 
r = 1 + e0 exp (wt - ikz) (1) 

where w is the growth rate, eo is the initial disturbance amplitude, k is the disturbance 
wavenumber, and Zo and I, are the modified Bessel functions of the first kind. In (1) and 
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(2), length and time variables have been non-dimensionalized by r,, and r,,/vp, where u, 
is the capillary-wave velocity (y/pro) ' /2.  Here, ro is the undisturbed radius of the jet, y 
is the liquid surface tension coefficient, p is the density of the liquid. This result predicts 
that disturbances are unstable for k < 1 and stable for k > 1, i.e. the wavelength A = 
27tr,/k of the symmetrical deformation is less or greater than the circumference of the 
cylinder, respectively, and the maximum growth rate occurs at k = 0.697. 

Later, Rayleigh's linear theory was extended by Yuen (1968), Nayfeh (1970), 
Lafrance (1975), and Chaudhary & Redekopp (1980) to include the nonlinear terms. 
The first attempt was by Yuen (1968) who showed that interaction occurred between 
harmonics of the disturbance, so that energy was extracted from the fundamental. His 
theory predicts that the neck (trough) of the wave shrinks faster than the swell (crest). 
However, at large times the theory also predicts that undulations occur in the neck 
between swells, that is, the jet exhibits more than one swell per wavelength. Nayfeh 
(1970) showed that this method leads to erroneous results near k = 1. Both the linear 
and nonlinear analysis of the jet instability, mentioned above. have considered the 
normal-mode type of analysis. Berger (1988) mentioned that the normal-mode analysis 
ignores the initial growth phase of the disturbances or perturbations to the basic state 
or flow. He treated the jet instability as an initial-value problem and after linearization 
showed that the growth of the instability is not exponential from initiation, as the 
normal-mode linear analysis predicts. Schulkes (1 993) derived the complete one- 
dimensional equations governing the motion of an axisymmetric inviscid liquid jet. He 
solved his newly derived equations with proper boundary conditions numerically, and 
noted that as the disturbances grow, the characteristic axial lengthscales of the major 
feature became typically of the order of the radius of the jet. Therefore, the validity of 
the one-dimensional approximations for the investigations of the dynamics of the 
nonlinear liquid jet is questionable. 

With the limitations and the problems associated with both the perturbation analysis 
and the one-dimensional models, it is of great interest to solve the full nonlinear 
equations numerically. Several attempts have been made in this direction. Fromm 
(1984) and Shokoohi & Elrod (1987) used a vorticity-stream function formulation to 
simulate the dynamics of a liquid jet. They demonstrated the validity of their methods 
by solving for the breakup of liquid jets with several different disturbance 
wavenumbers. Although the vorticity-stream function formulation can accurately 
track the liquid surface, it is computationally very intensive which inhibits a detailed 
study of the jet instability. Keunings (1986) developed a Galerkin finite element 
technique on deforming elements combined with a predictor-corrector scheme for the 
jet problem. Bousfield et nl. (1986) compared the results of this technique with their 
one-dimensional thin-filament analysis, as well as the experimental results of Goedde 
& Yuen (1970). They were mainly concerned with the instability of viscoelastic jets and 
did not provide any detailed information on the breakup of Newtonian jets. Mansour 
& Lundgren (1990) used a boundary-integral method to study the instability of an 
inviscid jet. They calculated the main and satellite drop sizes as a function of the 
disturbance wavenumber. Their results agreed with the experimental data. Finally, 
Tjahjadi et al. (1992) investigated the breakup of a long liquid filament in a quiescent 
viscous fluid. They used a boundary-integral calculation to study the evolution of the 
filament as a function of the viscosity ratio of the fluids and the initial wavenumbers 
of the interface perturbation. They were mainly concerned with the subsequent breakup 
of the satellite drop into subsatellites. 

A detailed numerical investigation of the breakup of a viscous liquid jet requires a 
very efficient and accurate numerical technique. One such technique is used here to 
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provide information on the dynamics of the capillary jets. In @2 and 3 we describe the 
numerical technique. In $4 we discuss the mechanism of the jet breakup and address 
the jet behaviour in the vicinity of the cut-off wavenumber with respect to various 
parameters. In $ 5  we provide the first detailed analysis of the jet behaviour in the stable 
region, followed by concluding remarks in 96. 

2. Mathematical and numerical formulation 
An axisymmetric incompressible Newtonian liquid jet in vacuum and zero gravity is 

considered. The variables are non-dimensionalized by the radius of undisturbed jet ro, 
and a characteristic time (pr;/y)'/'. The dimensionless continuity and momentum 
equations are 

v - u  = 0, (3) 
Du 
Dt 

Re- = V. T,  (4) 

where u = (u, u)  is the velocity vector (see figure 1) and T = -pi+ [Vu + (VU)~] is the 
stress tensor for Newtonian fluid. D/Dt is the total derivative operator defined as 
D/Dt = c?/c?t+u.V. In (4) the Reynolds number is defined based on the fluid 
properties and the initial jet radius: Re = ( l / v ) ( y r o / p ) l ' z ,  where v is the kinematic 
viscosity. The stress balance on the free surface provides the following boundary 
condition, assuming the ambient pressure as the datum : 

Tan = Re Kn on the free surface, ( 5 )  
where n is the outward unit normal and K is the curvature of the surface. We assume 
that the free surface can be represented by a height function & , I ) ,  as shown in 
figure 1. Therefore, K is given by 

hz* 1 
( 1 + h 3 3 / 2  - h( 1 + * K =  

Since a temporal analysis is considered here, the symmetry boundary conditions will 
apply on the axis of symmetry and planes of z = 0 and z = h/2:  

(7) 
au  
- = O ,  u = O  at r = O ,  
6r 

(8) 
a0 

u = o ,  - = 0 at z = O,h/2, 

where h is the disturbance wavelength. A Galerkin finite-element method with penalty 
function formulation is used to solve (3) and (4). Here the pressure is eliminated from 
the set of unknown variables by absorbing the continuity equation into the momentum 
equation (Hughes, Liu & Brooks 1979). In this formulation the pressure is defined as 

c?z 

p = - YV-u, (9) 

where Y is a large number 0(109) depending on ,u and Re. Four-node bilinear 
isoparametric elements are used to approximate the velocity distribution over each 
element : 

4 

u(z, r ,  t )  = C ui(t) Ni(z,  r, I ) .  (10) 
i= l  
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11/2 2, u 

FIGURE 1. The fluid zone divided into subvolumes represented by their height and thickness. 

A moving mesh is considered to discretize the computational domain. Therefore, the 
shape functions are time dependent. In order to obtain the finite-element formulation, 
(4) is multiplied by the shape function N,, and integration is carried over the element 
volume. After the divergence theorem is invoked the resulting equation is 

Du + V N;.  [ - p i  + [Vu + ( VU)~]] N j  T.  n d r ,  ( 1 1) 

where IR and r are the volume and the surface area of the element, respectively. 
Substitution of ( 5 )  and (9) in (1 1) gives the following closed-form finite-element 
formulation : 

Du + V N T .  [ Y(V - u) / + [Vu + (VU)~]] N j  Re Kn d T. ( 1 2) 

The above formulation is based on the Eulerian or fixed mesh where the locations of 
the nodes do not change with time. Special treatment of time derivatives is required 
when a moving grid is considered. Since the shape function is time dependent, the time 
derivative of velocity in discretized form becomes 

The last term of (13) introduces a new convective term in (12). Here, we allow the 
motion of the nodes in the r-direction only according to the following simple rule: 

zi ( t+6t)  = zi ( t )  = constant, r , ( t+6t)  = cr,(t), (14) 

where the subscript i refers to the node number, and c = c(z, t) is a constant for each 
column of nodes in the radial direction defined as 

c = h(z,  t + St)/h(z,  t ) .  (1 5) 
Mashayek & Ashgriz (1993) have shown that the total derivative of the velocity in this 
case becomes 

- _  DU au au ( csri 1; 
- -+u-+  u - - r  -. 

Dt at c)z 

Substitution of Du/Dt from (16) into (12) concludes the finite-element formulation of 
the problem. More details are given in Mashayek & Ashgriz (1993). 
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Wavenumber 0.2 0.3 0.45 0.6 0.7 0.8 0.9 
Number of elements 90 80 60 60 50 40 40 

TABLE 2. Number of axial elements used in simulations for different wavenumbers 

3. Free-surface determination 
The free surface of the jet is unknown a priori, and is determined using the height- 

flux method (HFM) developed by Mashayek & Ashgriz (1993). Consider the liquid 
domain shown in figure 1 with a free surface at the top. We divide this domain into 
several vertical subvolumes of width 62, and volume 6. The location of the free surface 
on the left and right sides of this subvolume is given by hi and hitl at time t ,  respectively. 
Knowing the velocity distributions over the sideplanes, we find the location of the free 
surface, i.e. hi and hi+l, at time t + St. This is achieved by first calculating the net flux 
of the fluid passing through the sideplanes during the time interval 6t, and determining 
the new volume of fluid, at t+6t ,  in the subvolume by adding the net flux to the 
previous volume at time t .  Then, we assume that the part of interface which is located 
in any two neighbouring subvolumes can be approximated by a line segment defined 
by k = az+b,  where a and b are two constants to be determined from the known 
volumes. 

Details of this technique are given in Mashayek & Ashgriz (1993) and it is 
summarized below. The initial fluid domain is discretized into several (40-90:) 
subvolumes and the volume of fluid in each subvolume is calculated. Then, the free 
surface is recovered from this set of numbers (subvolumes) using the line segment 
approximation. A finite-element mesh is then generated based on the free surface. The 
flow equations are solved and the velocity field is calculated. The new subvolumes are 
then found by calculating the flux of the fluid passing through the sideplanes. In the 
final step, the new free surface is reconstructed based on these numbers, and the new 
finite-element mesh is generated. This completes the sequence of operations needed to 
advect and reconstruct the fluid surface. 

Numerical simulations were performed using four elements in the radial direction. 
The number of elements in the axial direction was changed based on the wavenumber 
as given in table 2. The nodes were equally spaced in the axial direction. However, in 
the radial direction the node spacing was changed owing to the surface deformation. 
The appropriate mesh for each case was found by performing computations using 
meshes of different resolutions. In general, the mesh implemented for any particular 
simulation was chosen to be about 25 YO more refined than the finest mesh predicted 
by this procedure in order to assure accuracy. A sample case for wavenumber k = 0.63 
at  Re = 10 is given in Mashayek & Ashgriz (1993) indicating that 40 elements in the 
axial direction provides acceptable accuracy for this wavenumber. However, the 
number of elements used in the axial direction for k = 0.6 and the same Re was 60. 
which was well above the required limit. A similar procedure was utilized for mesh 
selection to study the oscillation of liquid jets in the stable region. Comparisons made 
throughout this work with other existing solutions are also useful to assess the accuracy 
of the calculations. 
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4. Temporal instability of capillary jets 

spatially harmonic surface displacement of a cosine shape : 
Consider an infinitely long cylindrical Newtonian liquid jet, initially at rest with a 

(17) r = R - co cos (kz). 

Here, k = 2nR/A and R is determined such that the volume of the jet is kept constant 
when the initial amplitude is changed. Therefore, 

R = (1 -$$)”’. (18) 

Owing to the symmetry, only half a wavelength of a cosine function is considered. The 
trough of the initial surface is set at i = 0, and the crest at z = A / 2 .  Hereinafter, the 
‘initial’ crest of the sinusoidal surface is referred to as the swell point and its trough 
is referred to as the neck point. The dynamics of this jet due to capillary forces is 
investigated for various values of initial disturbance wavenumber k, amplitude co, and 
jet Reynolds number Re. The cut-off wavenumber for different c,, is identified and the 
jet dynamics in both stable and unstable regions is investigated. In the following 
discussion, first the dynamics of a liquid jet for disturbances with wavenumbers less 
than the cut-off wavenumber is presented, followed by a description of the jet dynamics 
in the stable region. 

Details of the shape evolution of liquid jets with Re = 200, 10, and 0.1 and k = 0.2, 
0.45, 0.7 and 0.9, are presented in figure 2. The calculations are stopped when the 
radius of the jet a t  its minimum point reaches 1 % of the undisturbed jet radius, i.e. 
O.O1ro. This point is defined as the breakup point. It is assumed that the main 
characteristics of the actual breakup point (e.g. breakup time and the breakup 
location) are not significantly different from the breakup point defined here. Figure 2 
reveals the following characteristics for the breakup of a capillary jet. (i) The breakup 
point moves towards the swell point of the jet as the jet Re increases. This results in the 
formation of a ligament in addition to the main drops. The ligament will eventually 
form a satellite drop. (If the ligament is long enough it may further break up into more 
smaller drops.) (ii) The length and diameter of the liquid ligament decrease with 
increasing wavenumber k, and, therefore, so does the satellite size. (iii) The diameter 
of the liquid ligament and the satellite size increase with increasing Re at a constant 
wavenumber. (iv) Satellite formation is inhibited at low Re. (v) The breakup time 
decreases with increasing Re. More detailed descriptions of these characteristics are 
given next. 

4.1. Location of the breakup point 

The linear theory predicts that the breakup point is always at the neck (trough) of the 
initial disturbance. However, figure 2 clearly shows that the breakup point is closer to 
the swell points. In fact only for very small Re (Re = 0.1) does the breakup occur at 
the neck point, and as Re increases the breakup point moves away from the neck. For 
high-Re jets the fluid convection is more rapid and the neck region becomes flat while 
the diameter of the swell region increases. This results in the formation of two distinct 
regions in the jet: the middle region, where the curvature in the (r, z)-plane is very small 
and resembles a liquid ligament; and the swell region, where the curvature in the 
(r,z)-plane is large. For Re = 200, these two distinct regions are seen at t = 22.398 in 
figure 2(a). Similar features are observed in figure 2(e) for Re = 10 at slightly later 
time, t = 22.415. As Re is reduced to 0.1, the displacement of the liquid becomes more 
difficult. Therefore, the disturbances basically grow locally, resembling the linear 
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FIGURE 2. Time evolution of the instability of a capillary liquid jet, q, = 0.05: (a) k = 0.2, Re = 200; 
(b)  k = 0.45, Re = 200; (c) k = 0.7, Re = 200; ( d )  k = 0.9, Re = 200; ( e )  k = 0.2, Re = 10; cf) k = 
0.45, Re = 10; (g) k = 0.7, Re = 10; (h)  k = 0.9, Re = 10; (9 k = 0.2, Re = 0.1 ; ( j )  k = 0.45, Re = 
0.1 ; (k) k = 0.7, Re = 0.1 ; ( I )  k = 0.9, Re = 0.1. The numbers on the figures indicate the 
corresponding times. 

theory. Figures 2(+2(I) show that the disturbances stay sinusoidal for very long time 
(relative to the breakup time) and may result in breakup of the jet at the neck point, 
z = h/2 .  Generally, the liquid convection results in the diminishing of the surface 
curvature in the (r, z)-plane in the neck region and, consequently, the formation of the 
liquid ligament. 

In order to gain better insight into the development of the breakup point of the jet, 
we have plotted the position of the minimum radius along the jet from t = 0 up to the 



172 N .  Ashgriz and F. Mashayek 
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0 4 8 12 16 
" I 

FIGURE 3. The motion of the location of the minimum radius of the jet along the jet axis. 

breakup time, 1,. This plot is shown in figure 3 for a jet with Re = 200 and fork = 0.2, 
0.3,0.45,0.6,0.7,0.8 and 0.9. Two different characteristic times are identified for each 
of the curves in this figure, the most important one being the time that the minimum 
point stays at z = 0. This time, t,,, constitutes the greatest portion of the total breakup 
time and it first decreases and then increases with increase in the wavenumber. The 
minimum t,, occurs at  the wavenumber for the maximum growth rate. Later, a flat 
region on each curve is observed which indicates a rapid displacement of the location of 
the minimum jet radius from the neck toward the swell points. This sudden relocation 
distance is longer for smaller wavenumbers and it is followed by a more gradual 
motion. The time of this gradual motion, tb2, constitutes the second characteristic time 
for the jet breakup. During this time, which is much smaller than t b l ,  the location of 
the minimum radius point of the jet continuously moves toward the swell point. The 
end points of the curves in figure 3 indicate the breakup times. One interesting feature 
to note is that the length of the slow moving part of the point of minimum radius 
remains approximately the same for all wavenumbers. Figure 3 shows that the breakup 
point moves closer to the swell point as the wavenumber is reduced. In other words, 
the ratio of the length of the ligament to the wavelength increases with decreasing 
wavenumber. The total relocation distance of the point of the minimum radius 
significantly decreases for low Reynolds number jets. 
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Re = 0.1; ( d )  k = 0.9, Re = 0.1. 

4.2. Growth rate of the disturbances 
The linear theory not only defines the region of unstable disturbance wavenumbers but 
also provides their growth rates. These growth rates are useful in estimating the 
breakup length and time. According to the linear theory the variation of the 
logarithmic value of the amplitude of the surface disturbances with time is linear. 
Although, for an actual liquid jet this amplitude variation may not be linear, the 
experimental results of Goedde & Yuen (1970) showed that for water and 
glycerin-water jets the logarithmic value of the difference between the amplitude at the 
neck and that at the swell varies linearly except close to the breakup time. They 
mentioned that the nonlinear effects at these two points cancel out. This cancelling 
effect has also been noted by Yuen (1968) who pointed out that the averaging process 
using the difference between swell and neck cancelled the second-order terms in his 
analysis. Goedde & Yuen (1970) plotted ln(A,-A,,) as a function of time, where A ,  
and A,, are the amplitudes of the swell and the neck points in the jet. They used the 
linear region on this curve to describe a growth rate for each wavenumber. 

Figure 4 shows the logarithmic values of the normalized amplitudes of the neck 
((r,, - R)/s , ) ,  the swell ( (r ,  - R)/e,) ,  and their difference ( (r ,  - r, ,) /so) calculated by our 
full simulation for Re = 200, and 0. I ,  and k = 0.2 and 0.9. Here, rn and r, are the radii 
of the neck and the swell, respectively, and R is given by (18). A single growth rate does 
not properly describe the actual behaviour of the jet. However, our nonlinear analysis 
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FIGURE 5. Comparison of the numerically calculated growth rates (symbols) with those from 
Chandrasekhar’s linear theory and Cline & Anthony’s (1978) experiment (0). 

somewhat concurs with Goedde & Yuen’s (1970) results, which showed that the 
logarithmic value of the difference between the neck and the swell may be approximated 
by a line, even though the logarithmic variation of the amplitude of the neck and the 
swell, by themselves, are not perfectly linear. In order to provide a value for the growth 
rate, a line is fitted to the difference between the amplitudes of the neck and swell and 
its slope is measured. The line is fitted only to the middle region of each curve, while 
the end regions are ignored. The dispersion curves are obtained using the calculated 
values of the growth rate for different wavenumbers and for four Re. The data are 
plotted in figure 5 along with the corresponding curves from Chandrasekhar’s (1961) 
linear theory for a viscous jet. As predicted by the linear theory and observed 
experimentally, the viscosity reduces the magnitude of the growth rate for all 
wavenumbers. In addition, the maximum growth rate occurs at lower wavenumbers for 
more viscous jets. This is due to the more effective viscous damping at larger 
wavenumbers. The linear theory results in a better prediction for low-Re jets. At high 
Re, the linear theory overpredicts the nonlinear growth rate for lower wavenumbers 
and underpredicts it at higher wavenumbers. The largest deviation at Re = 200 is 
approximately 10%. The experimental data of Cline & Anthony (1978) for water jets, 
which are also plotted in figure 5,  show the same behaviour as the nonlinear results. 
However, the relatively large scatter observed in the experimental data reduces the 
possibility of one-to-one comparison. 

Figure 4 reveals several other interesting features of the changes of the amplitudes 
of the neck and swell with respect to each other and as a function of time. Initially, the 
growth rate of the neck point is larger than the growth rate of the swell point, since a 
radial displacement in the neck region corresponds to a small radial displacement in the 
swell region for the same volume displacement. This can be seen for the short 
wavelengths (large k) of figures 4(b) and 4(4, where the neck amplitude seems to grow 
at a faster rate. For longer wavelengths, a longer ligament is formed and, consequently, 
a small decrease in the radius of the neck (or an increase in its amplitude) results in a 
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large decrease in the volume of the whole ligament. Therefore, after establishment of 
the ligament the growth rate of the amplitude of the neck decreases, eventually 
dropping below that of the swell. This relative change in growth rate is clearly seen in 
figures 4(a) and 4(c). 

Close to the breakup point, the growth rate may increase or decrease depending on 
Re and k. For high-Re jets and small k, the growth rate of the neck point decreases 
close to the breakup time, while that of the swell point increases. This results in small 
variation of the growth rate of the difference between the two. On the other hand, for 
low-Re jets the growth rates of the neck and swell close to the breakup point both 
decrease for small k while they both increase for large k. 

For the higher-Re jets of figures 4(a) and 4(b) an initially flat region on the 
amplitude curve is observed. This flat region has also been predicted by the initial-value 
analysis of Berger (1988) and observed experimentally by Chin (1983). The higher Re, 
the higher the initial flat region of the amplitude-time curve. It should be noted that 
for the initial disturbance amplitude of the present case the flat region can be as high 
as 10% of the breakup time. In other words, initially the disturbances may grow at ;i 
small rate for up to 10% of the total breakup time. Berger’s (1988) initial-value 
analysis clearly shows that surface amplitude does not grow exponentially as t +. 0. He 
notes that as t + O  more and more modes become significant. Only after the higher 
modes are damped, does the single mode analysis takes effect and an exponential 
growth rate is observed. I t  may be possible to draw the same conclusion from figure 
4. For the high-Re jets of figures 4(a) and 4(b) (Re = 200), a long initial period is 
observed before the surface amplitude assumes an exponential growth. However, for 
the low-Re jets of figures 4(c) and 4(d) (Re = O.l), the higher harmonics damp out 
quickly and the surface amplitude assumes an exponential growth shortly after 
initiation. 

To gain a better understanding of the effect of the nonlinearities on the jet breakup 
and the mode coupling, the jet surface shape is decomposed into its linear modes by 
implementing the Fourier expansion 

z 

r(z,  1 )  = R + C c,, cos (nkz).  
n -0 

The orthogonality of the cosine functions and numerical integration are used to 
determine the coefficients cn. Figure 6 shows the amplitude of the fundamental, zeroth, 
second, third, and fourth harmonics of the initial disturbance with time corresponding 
to the cases given in figure 4. Figure 6(a) shows the fundamental and higher harmonics 
for a jet with Re = 200 and k = 0.2. Here, the second and third harmonics grow righi 
from the initiation ( t  = 0). However, their amplitudes and growth rates are small in 
the beginning and become significant only later in time. In figure 6(b )  for Re = 200 
and k = 0.9, none of the harmonics grow until very close to the breakup time. It should 
be mentioned that a close inspection of the results reveals that the higher harmonics are 
present throughout the evolution of the jet (this is not observable in the scale shown 
here); however, they have a stable oscillatory behaviour with small amplitude of 
oscillation. The higher harmonics in this case do not grow until the formation of the 
thin ligament close to the breakup time. 

The formation of the ligament can be explained by the nonlinear theories. The 
nonlinear analyses of Yuen (1968) and Chaudhary & Redekopp (1980) have revealed 
that the mode coupling results in a feedback from higher harmonics to the fundamental 
and vice versa. For instance, the second harmonic generates interactions between the 
first four harmonics only by considering the second-order solution. The modes 
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FIGURE 6. Amplitude of the fundamental (-), and zeroth (---), 2nd (. . .) ,  3rd (---), and 
4th (---) harmonics as a function of time; c,, = 0.05: (a)  k = 0.2, Re = 200; (b)  k = 0.9, Re = 200; 
(c )  k = 0.2. Re = 0.1 ; ( d )  k = 0.9. Re = 0.1. 

generated by this coupling effect are not necessarily in phase with each other. 
Therefore, the second harmonic may generate a fundamental with a phase difference 
with the original fundamental disturbance. The summation of all of the fundamentals 
generated by this mode coupling results in the nonlinear variation of the fundamental, 
and the formation of the observed ligament. The growth rates of the disturbances on 
this ligament are different from the original jet, since their characteristic disturbance 
wavenumber, k, ,  is less than k.  The characteristic disturbance wavenumber for the 
ligament is defined as k, = 27tr,/A,, where r ,  and A, are the characteristic radius and 
length of the ligament, respectively. Although r, and A, are changing, the results 
indicate that, after the formation of the ligament, close to the breakup time r , / R  < 
A , / A .  Therefore, k,  < k and the higher harmonics may grow if nk, < 1. This explanation 
has to be contrasted with the weakly nonlinear solutions such as Chaudhary & 
Redekopp's ( 1  980) third-order solution. They showed that if the fundamental input 
has a growing solution, all the harmonic components will have some growth associated 
with them, irrespective of whether or not their own wavenumber is below the cut-off. 
Based on our explanation, even if this feedback mechanism may result in very small 
growth rates for higher harmonics, in time the characteristic wavenumber decreases, 
strengthening the mode coupling and enhancing their growth rate. 

As the wavenumber increases the higher harmonics do not grow until very close to 
the breakup time. In addition, for large wavenumbers the jet shape remains almost 
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FIGURE 7. Comparison of the numerically calculated breakup times with co = 0.05 (symbols) with 
those from Chandrasekhar’s linear theory. 

sinusoidal until the last moments of the breakup. This explains the rapid reduction of 
the ligament length with wavenumber. For smaller wavenumbers, the feedback 
mechanism from the higher harmonics to the fundamental seems to be small. In fact 
the energy is mainly transferred from the fundamental to the higher harmonics. Figure 
6(a)  shows a minimum in the amplitude of the fundamental. Here, significant energy 
is transferred from the fundamental to the second and third harmonics. Note that the 
signs of the second harmonic and the fundamental are different for smaller 
wavenumbers, but equal at larger wavenumbers. In addition, the study of the 
harmonics reveals that no significant changes with Reynolds number occur within the 
range Re = 10 to 200. Generally, the second harmonic contributes most to the 
observed nonlinearity in growth rates. 

4.3. The breakup time 
The breakup times for each wavenumber and for different Re are shown in figure 7. The 
curves belong to Chandrasekhar’s analytical solution where the breakup times are 
calculated from the growth rates using the relation 1, = In ( R / e O ) / w .  Our numerically 
calculated data are shown with symbols on figure 7 and are in good agreement with the 
analytical results only around the most unstable wavenumbers. For each Re, as the 
wavenumber increases the breakup time first decreases until it reaches a minimum and 
then increases. For Re = 200, the breakup time, t , ,  decreases from 25.21 3 at k = 0.2 to 
a minimum of t ,  = 10.034 at k = 0.8, and then increases to t ,  = 11.495 at k = 0.9. 

The breakup times for Re = 10 and 200 are not significantly different. However, as 
Re decreases, the breakup time increases. The breakup time increases significantly on 
reducing Re to 0.1. Here, although the jet is unstable, the growth of disturbances is very 
slow. The minimum breakup time occurs at lower wavenumbers as Re decreases. This 
is in accordance with the linear theory. 

It should be mentioned that the breakup time is significantly dependent on the initial 
disturbance amplitude. We have compared our results for the disturbance amplitude 
of eo = 0.05 with those of the linear theory, which are for infinitesimally small 
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FIGURE 8. Variation of the main and satellite drop sizes with wavenumber: (a) effect of Re, 
(b)  comparison with the experimental data of Rutland & Jameson (1970). 

disturbance amplitudes. The reason that our nonlinear results compare well with those 
of the linear theory is that the small growth rates close to the initiation (as r+0)  
compensate for the large growth rates close to the breakup point. The initial-value 
analysis of Berger (1988) showed that the breakup times decrease from 0.75 to less than 
0.5 of those of normal-mode analysis with Re. However, this reduction is due to the 
relatively large disturbance amplitudes in his calculation. In fact, since the initial-value 
analysis shows small initial growth rates, its breakup times should be larger than those 
of the normal-mode analysis, if very small initial amplitudes are used. 

4.4. Satellite size 
The first obvious deviation from the linear theory, as noted in $4.1, is the formation 
of a ligament between the main (parent) drops after the breakup. This ligament 
eventually becomes spherical and forms the satellite drop (it may also break into more 
smaller drops). Therefore, the volume of the ligament between the main drops after the 
breakup provides the satellite size. Figure 2 clearly shows that as the wavelength 
increases the length of the ligament and consequently the satellite size increase. Figure 
8(a) shows the variation of the main drop radius as well as the radius of the satellite 
drop for different wavenumbers and for Re = 0.1, 10, and 200. Generally, for Reynolds 
numbers larger than 10 there is no significant change in size with Re. This explains the 
observed agreement between the results obtained by the inviscid theories (both weakly 
nonlinear analysis and boundary-integral calculations of full nonlinear equations) and 
the experimental data for water jets (Re = 200). However, for Re < 10 the variation 
becomes more pronounced. A comparison of our calculated drop and satellite sizes and 
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FIGURE 9. The satellite/no-satellite regions in the (Re, k)-domain: A, no satellite is formed: 
V, small satellite is formed. 

the values measured by Rutland & Jameson (1970) is given in figure 8(b), which shows 
good agreement between the two. 

The results show that for the same disturbance wavenumber the satellite size 
decreases with decreasing Re. Again, for low-re jets, the viscous damping of the higher 
harmonics delays the movement of the minimum point and, consequently, results in 
a reduction of the ligament length. In addition, low-Re jets need a higher pressure 
difference between the ligament and the drop to overcome the dissipative and inhibiting 
effects of viscosity in order to cause detachment of the ligament from the drop. This 
latter effect results in the reduction of the ligament diameter. An increase in viscosity 
strengthens the fluid’s inhibiting effects and in order for detachment to occur the 
ligament should become more slender and threadlike. The combined effects of reduced 
length and diameter of the ligament result in significant reduction of the satellite size 
for highly viscous liquids, as seen in figure 8(a). 

Because of its practical importance, we have obtained the marginal jet Reynolds 
numbers, for a range of disturbance wavenumbers, below which no satellite is formed. 
Figure 9 shows the satellite/no-satellite regions in terms of Re and k for q, = 0.05. For 
each wavenumber two data points are shown. The satellites are formed for the upper 
data point, and no satellite is obtained for the lower point. A curve is passed through 
these points to define the satellite/no-satellite regions. As Re is increased, satellite 
drops are eventually formed for all the unstable wavenumbers. An interesting 
observation made from figure 9 is that the slope of the limiting Re versus wavenumber 
curve changes significantly around k = 0.7. For k -= 0.7 much smaller-Re jets are 
needed in order to prevent satellite drop formation. For k > 0.7 the slope of the curve 
is drastically increased and the limiting Re increases faster with the wavenumber. 
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FIGURE 10. Effect of the amplitude of the initial disturbance on the breakup of the jet; Re = 200, and 
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FIGURE 1 1 .  Variation of  the breakup time as a function of the initial amplitude for 

Re = 200 and k = 0.7. 

4.5. Eflect of disturbance amplitude 
The effects of large disturbance amplitudes on the breakup of a jet with Re = 200, and 
k = 0.7 are investigated. The results for initial disturbance amplitudes of en = 0.001, 
0.1,0.2 and 0.5 are presented in figure 10. Note that since the volume is kept constant, 
the initial diameter of the neck decreases significantly as the initial disturbance 
amplitude is increased. Results indicate that the increase in the initial amplitude 
reduces the breakup time as shown in figure 11. These results confirm the logarithmic 
behaviour of the breakup time, which was derived by Chaudhary & Maxworthy 
(1980a), only for small amplitudes. However, as en is increased a deviation from this 
logarithmic behaviour is observed. 
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FIGURE 12. Variation of the main and satellite drop sizes as a function of 
the initial amplitude for Re = 200 and k = 0.7. 

A plot of the main and satellite drop sizes as a function of initial disturbance 
amplitude is given in figure 12. The satellite size does not decrease monotonically with 
amplitude. At small initial amplitudes the satellite size does not change significantly. As 
the amplitude is further increased, a sharp change in the satellite size is observed at 
amplitude of around 0.2. This sudden change can be seen by comparing figures 10(b) 
and 1O(c) for e,, = 0.1 and 0.2, respectively. Note that the diameter of the ligament 
significantly decreases on increasing the amplitude from 0.1 to 0.2. However, after 
eo = 0.2 the ligament becomes small enough that its diameter does not decrease as fast. 
Only by increasing q, to 0.5 (figure 10d) can one see some decrease in ligament diameter 
and, consequently, a decrease in satellite size. After this point, the satellite size 
decreases monotonically with amplitude. The amplitude is increased until no satellite 
is formed. The results indicate that the satellite formation persists up to the point where 
the initial neck diameter is almost zero. 

4.6. Cut-of wavenumber 
Linear theories by Rayleigh (1879) for inviscid jets and Chandrasekhar (1961) for 
viscous jets predict that a jet is unstable for disturbances with wavenumbers smaller 
than 1 and stable for wavenumbers greater than 1. The cut-off wavenumber of 
k, = 1 is found to exist in the limiting case of an infinitesimal initial disturbance. The 
nonlinear theories by Wang (1968) and Lafrance (1975) also predict k, = 1. However, 
the nonlinear theories by Yuen (1968) and Nayfeh (1970) predict that the cut-off 
wavenumber varies with the initial disturbance amplitude as k, = 1 + (9/ 16)e& and 
k, = 1 +(3/4)4, respectively. Chaudhary’s (1977) nonlinear analysis results in a 
transitional zone for the cut-off wavenumber based on the initial disturbance 
amplitude. His analysis shows that in the cut-off zone the growth rate changes from 
exponential to linear near k = 1 and finally to an oscillatory solution. Experimental 
results of Chaudhary & Maxworthy (19806) have shown a linear growth rate for large 
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FIGURE 13. Effect of the amplitude of the initial disturbance in increasing the cut-off wavenumber for 
Re = 200. Numerical calculations (symbols) are compared with the analytical result of Nayfeh (1970). 

initial inputs and transition towards a higher growth rate (i.e. smaller breakup time) for 
lower inputs near the cut-off wavenumber of 1. 

The above analytical results are only valid for very small disturbances. We have 
carried out full simulations for a large initial disturbance amplitude for a jet with 
Re = 200. Figure 13 shows the cut-off wavenumbers as a function of the initial 
disturbance amplitude. The analytical results of Nayfeh (1970) are also plotted for 
comparison. The numerical simulations could not be extended to values of k close to 
1 ; therefore, close comparison with Nayfeh’s equation is not possible. However, it can 
be said that Nayfeh’s theory seems to work for E~ up to 0.4. Our results indicate that 
in order to make the jet unstable above k = 1, the initial amplitude of the disturbance 
has to be increased significantly at first. However, after a certain amplitude, the jet 
becomes unstable for a large range of wavenumbers with only small increases in the 
amplitude. For instance, increasing co from 0.01 to 0.35 will increase k,  from 1 to 1.1 ; 
however, increasing co from 0.35 to 0.5 will increase k,  from 1 . 1  to 1.4. 

5. Stable oscillation of capillary jets 
Since all naturally observed capillary jets are unstable, the main objective of the 

studies in this area has been to understand the breakup mechanism. Therefore, less 
attention has been devoted to the understanding of the behaviour of the jet in the stable 
region. However, in $4, we have shown that any initial disturbance generates other 
disturbances on the jet. The newly generated disturbances or the higher harmonics may 
be stable if their wavenumber is larger than the cut-off wavenumber. Therefore, a 
better understanding of the behaviour of a capillary jet subject to disturbances with 
wavenumbers larger than the cut-off wavenumber (i.e. stable region) can help in 
explaining the influence of the higher harmonics on the jet instability and in designing 
disturbances to better control the jet breakup process. In this section we discuss the 
oscillation dynamics of a liquid jet subject to disturbances with wavenumbers larger 
than the cut-off wavenumber. The same parameters that have been considered for the 
jet breakup, namely k ,  Re, and e0, are also considered here. 
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FIGURE 14. Time variation of (a) the period and (b)  the decay factor for Re = 200 and e0 = 0.05. 

A capillary jet is stable for disturbances with k > k,  and based on the linear theory 
it oscillates at a constant frequency. For a viscous jet the amplitude of the oscillation 
damps out and the jet eventually achieves an equilibrium cylindrical shape. The 
damping oscillations of a jet with Re = 200 subject to disturbance wavenumbers of 
k = 1.2,1.4 and 1.6 and for a disturbance amplitude of 0.05 are considered. Figure 14(a) 
shows that the period of the oscillation stays relatively constant with time for different 
wavenumbers. Similarly, figure 14(b) shows that the decay factor, after an initially 
sharp drop, stays constant in time, and it increases with increasing the wavenumber. 
A physical explanation for the initially sudden drop in the decay factor can be given 
based on the part of the initial surface energy which is transformed into the kinetic 
energy at the end of the first period and which cannot be recovered as surface energy. 
Initially all the energy of the system is on the surface - there is no kinetic energy or 
basic state. Shortly after the onset of the fluid motion the surface energy is redistributed 
throughout the liquid in the form of kinetic energy. Since this transfer of energy is finite 
(not infinitesimal) and it is distributive, the recovery of all the kinetic energy into 
concentrated energy solely on the surface is not possible. Therefore, the jet surface 
amplitude will drop sharply at the end of the first period. In the subsequent periods the 
viscous damping will take effect and slowly reduce the amplitude with a constant decay 
factor. A mathematical explanation of the observed sudden drop in the decay factor 
can be given based on the Berger's (1988) initial-value analysis, in which a continuous 
spectrum of disturbances exist as f + 0. For a stable jet, these disturbances, which have 
small amplitudes, damp out shortly after initiation, e.g. during the first period. 
Therefore, the overall effect appears as a sudden drop in the amplitude. 
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FIGURE 16. The oscillation in the 

As Re is reduced a value is reached below which the jet is overdamped and it does 
not oscillate. The effect of initial amplitude on overdamped oscillations is seen in figure 
15. Increasing the initial amplitude of the disturbance to e0 = 0.1 does not change the 
overdamped behaviour of the jet. However, it takes longer for the jet to come to rest. 
The regions of overdamped and underdamped oscillations have been calculated as a 
function of the Reynolds number and wavenumber for E,, = 0.05 and are plotted in 
figure 16. 

The influence of the initial disturbance amplitude on the oscillation of the jet is 
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FIGURE 17. Amplitudes of swell (--), neck (---), and their difference (-) as a function of time for 
Re = 200 and k = 1.2; (a)  e0 = 0.01, and (b)  c0 = 0.3. (c, d )  The corresponding amplitudes of the 
fundamental (-), zeroth (--), second (.. .), and third (----) harmonics as a function of time: 
(c) t',, = 0.01, ( d )  E,, = 0.3. 

presented in figures 17(a) and 17(b) in terms of the amplitudes of the swell, neck, and 
their differences for a jet with Re = 200 and k = 1.2, and for initial amplitudes of 
eo = 0.01, and 0.3. For a very small amplitude of 0.01 the jet oscillates sinusoidally with 
gradual damping. As the amplitude increases the surface of the jet starts to deviate 
from the sine shape and reveals a secondary oscillatory behaviour superposed on the 
original disturbance. The nature of these secondary oscillations can be identified by 
plotting the fundamental and the higher harmonics of the surface with time, which are 
shown in figures 17(c) and 17(d). As discussed in 94.2, the higher harmonics are 
present right from the initiation. The amplitudes of these harmonics are small for small 
eo; however, they progressively become larger with increasing eo. This is clearly 
observed in figures 17(c) and 17(d). It is also noted that the observed secondary 
oscillations are mainly due to the second harmonic of the initial disturbance. The third 
harmonic does not appear until the initial amplitude of c,, = 0.4. The same features are 
observed for low-Re jets except that the damping is more rapid. Figures 18(a) and 18(b) 
show the amplitude of the swell, neck and their difference as a function of time and for 
Re = 30 and 10, with k = 1.2 and for initial amplitude of e0 = 0.3, with their surface 
harmonics in figures 18(c) and lS(d), respectively. Using the method of multiple 
timescales, Nayfeh (1970) showed that disturbances with k > k, oscillate with two 
frequencies, one being amplitude dependent, the other amplitude independent. 
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FIGURE 18. Amplitudes of swell (--), neck (---), and their difference (-) as a function of time for 
k = 1.2; q, = 0.3: (a) Re = 30, and (b)  Re = 10. (c, d )  The corresponding amplitudes of the 
fundamental (-), zeroth (--), second (. . .), and third (---) harmonics as a function of time: 
(c) Re = 30, ( d )  Re = 10. 

Interestingly, the high-Re jet of figure 17 shows similar behaviour. The fundamental 
frequency does not vary with the amplitude, yet the amplitude of the second harmonic 
is affected by the amplitude of the initial disturbance. 

Study of the stable region (k  > k,) allows the investigation of the mechanism of 
transition from stable to unstable behaviour. The linear theory predicts a sinusoidal 
variation of the amplitude with time independent of the initial disturbance amplitude. 
However, the presence of nonlinear effects causes deviation from this smooth 
sinusoidal behaviour with increasing initial amplitude, as shown in figure 17(b). As the 
initial amplitude is increased, the contribution of higher harmonics, particularly the 
second harmonic, becomes more significant. The amplitude of the second harmonic 
increases with increasing initial amplitude. Eventually, an initial disturbance amplitude 
is reached at which the neck point first moves toward the axis, resembling the unstable 
behaviour of the jet. For the case shown in figure 17(b), the jet finally recovers the 
stable oscillation and the radius of the neck point increases with time, after passing 
through a minimum. (The minimum point is marked on the figure.) Further increases 
in the initial amplitude result in the attainment of a smaller minimum neck radius and 
eventually the neck point touches the axis before the jet finds the opportunity to reverse 
the downward motion. Therefore, the higher harmonics, in particular the second 
harmonic, play a major role in the transition from the stable to unstable region. 
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FIGURE 19. Variation of (a) the period of the oscillation and (b)  the decay factor with the 
amplitude of the initial disturbance for various Re and for k = 1.2. 

The effect of the initial disturbance amplitude on the period of the oscillation for 
different Re is shown in figure 19 (a). Only the first period is considered. The first period 
always increases with the initial amplitude. At low amplitudes it decreases with 
increasing Re; however, at high amplitudes it increases with increasing Re. The 
damping rates of the amplitude for different Re and for various co are plotted in figure 
19(b). The results show that the damping rate increases with reducing Re, and it 
slightly increases with initial amplitude. At very large amplitudes and for lower Re the 
damping rate starts to decrease. When the amplitude is increased to eo = 0.5 the jet 
becomes unstable. 
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6. Conclusions 
The problem of capillary jet breakup is investigated in the context of temporal 

instability. The Galerkin finite-element method is used along with the height-flux 
method for the advection and reconstruction of the free surface of the jet. 

Based on the results obtained here the satellite drops are persistently formed after the 
breakup. Only for very small Re are the satellite drops not observed. Both the initial 
disturbance wavenumber and amplitude determine the Re below which no satellite is 
formed. We have provided the limiting Re for any given disturbance wavenumber and 
for initial disturbance amplitude of c0 = 0.05, below which no satellites are observed 
(figure 9). An increase in the initial disturbance amplitude will shift the no-satellite 
region to higher Re. The results show that using jets with Re between 1 to 5 and 
disturbances with k 2 0.8 the satellite formation can be prevented, even with very small 
initial disturbance amplitudes. An increase in amplitude also results in the reduction of 
the satellite size (figure 12). The results indicate that for an initial disturbance 
wavenumber of k = 0.7 and initial disturbance amplitudes up to 10 YO of the jet radius 
(E,,  = 0. l), the change in satellite size is not significant. However, there is a sharp drop 
in satellite size when E,, is increased to about 20% of the jet radius, after which the 
satellite size does not change significantly. The results also indicate that the second 
harmonic of the fundamental disturbance is mainly responsible for the formation of 
the satellite drops. It is, therefore, expected that the satellite drop formation can be 
controlled by using frequency modulated disturbances. For instance, by disturbing the 
jet with two wavenumbers. one being the fundamental k ,  and the other being its second 
harmonic 2k, one may be able to reduce the satellite size. This idea had been previously 
proposed and tested by Chaudhary & Maxworthy (1980b), Orme & Muntz (1990) and 
Bousfield et al. (1990) who have used a frequency- and/or amplitude-modulated initial 
disturbance to cause a more controlled breakup of the jet. Since for fundamental 
disturbance wavenumbers larger than 0.5 the higher harmonics are stable, the 
behaviour of the jet subject to stable wavenumbers is also investigated. The results 
show that the jet in the stable region may have underdamped or overdamped 
oscillations. The controlling parameters are Re, k and E,,. For a small disturbance 
amplitude of c0 = 0.05, the limiting Re (for a range of wavenumbers) below which the 
jet has overdamped oscillation is obtained (figure 16). Since for overdamped 
disturbances the amplitude continuously decreases in time, if the jet is disturbed such 
that the higher harmonics fall in the overdamped region, it is expected that the satellite 
size will become smaller. 
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